Asymptotics of solution of a boundary value problem for a singularly perturbed quasilinear one-characteristic equation
نویسندگان
چکیده
منابع مشابه
A Boundary Value Problem for a Singularly Perturbed Differential Equation
has a solution «=g(x) for O^x^Xo with g(0)=a and u = h(x) tor xo^x^l with h(l)=b where g(x0)=h(x0). It will be assumed that g'(xo)*h'(xo). The case of (1) with f=l — (y')t and where \a — b\ <1 can be treated explicitly. For small e>0 the solution of (1) tends to the broken line solution of (2) with g(x)=a — x and h = b — 1+x and Xo = (l+a—b)/2. (There is another broken line solution of (2) with...
متن کاملQuasilinear singularly perturbed problem with boundary perturbation.
A class of quasilinear singularly perturbed problems with boundary perturbation is considered. Under suitable conditions, using theory of differential inequalities we studied the asymptotic behavior of the solution for the boundary value problem.
متن کاملA hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer
The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...
متن کاملPositive Solution for Boundary Value Problem of Fractional Dierential Equation
In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.
متن کاملPositive solution for boundary value problem of fractional dierential equation
In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Institute of Mathematics and Mechanics,National Academy of Sciences of Azerbaijan
سال: 2020
ISSN: 2409-4986
DOI: 10.29228/proc.74